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Research Objectives

Substantive problem:
•Selecting covariance function for observed
Gaussian process data e.g. spatial[1]

Methodological objective:
•Use Bayesian model averaging to account for
uncertainty in correlation structure[2]

Gaussian Processes
Correlation between errors determined by Euclidean
distance h between locations s ∈ D.

Z(s) = x(s)′β︸ ︷︷ ︸
deterministic

+σ2ρ(h) + τ 21(h = 0)︸ ︷︷ ︸
stochastic

Covariance functions evaluated in this study:
Exponential: ρ(h) = exp

(
−h
φ

)
Gaussian: ρ(h) = exp

[
−
(
h
φ

)2]

Spherical: ρ(h) =


1− 1.5hφ + 0.5

(
h
φ

)3
, if h < φ

0, otherwise

Bayesian Model Averaging
The posterior probability for any model l in the set
of candidate models K is:

π(Ml|y) = π(Ml|y)π(Ml)∑K
m=1 π(Mm|y)π(Mm)

The marginal posterior distribution of a parameter
θ across K is:

π(θ|y) =
K∑
m=1

π(θ|y,Ml)π(Ml|y)

Monte Carlo Simulation
10 simulated datasets are generated from a model
with exponential covariance using each combina-
tion of the following parameters with the geoR pack-
age.
X1 ∼ N (0, 1.25)
X2 ∼ exponential(4)
β = [1.2, 3.5,−2.7]

σ2 ∈ {15, 20, 25}
φ ∈ {10, 25, 50}
τ 2 ∈ {5, 7.5, 10}

Model Parameters
µβ ∼ N (0, 5)
σβ ∼ Cauchy(0, 2.5)
β ∼ N (µβ, σβ)

µσ2 ∼ N (0, 5)
σσ2 ∼ Cauchy(0, 5)
σ2 ∼ Cauchy(µσ2, σσ2)

µφ ∼ N (0, 5)
σφ ∼ Cauchy(0, 5)
φ ∼ Cauchy(µφ, σφ)

µτ 2 ∼ N (0, 5)
στ 2 ∼ Cauchy(0, 5)
τ 2 ∼ Cauchy(µτ 2, στ 2)

Models are estimated with Stan via rstan. Marginal likelihoods are estimated using the bridgesampling
package. Posterior model probabilities are calculated with π(MExponential) = π(MGaussian) = π(MSpherical) and
used to compute averaged point estimates and 95% credible intervals for all parameters in each simulation.

Monte Carlo Simulation Results

Covariance Parameters

Predictor Coefficents
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Model: BMA Exponential Gaussian Spherical

Most Likely Model
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Conclusion

•BMA corrects for inclusion of ill-suited models.
•BMA is less biased, but also less efficient, at
estimating covariance function parameters.

Next Steps

•Simulate data from additive and multiplicative
combinations of covariance functions at a more
fine-grained set of covariance function parameters.

Email: jrw@live.unc.edu
Web: jrw.web.unc.edu
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